Awesome-OL User Guide

Comprehensive instructions for setting up and running experiments with Awesome-OL

Quick Start: For first-time users, we recommend beginning with the main.ipynb notebook and following the demo section below.

🧪 Demo

Get started quickly with our interactive demo notebook:

📂 Datasets

All datasets are stored as .csv files in the datasets folder with the following structure:

Supported dataset formats:

['Jiaolong', 'Waveform', 'SEA', 'Hyperplane' or './datasets/' + name + '.csv']
Note: You can use any custom dataset in CSV format by placing it in the datasets folder and specifying the filename.

📈 Visualization Tools

Comprehensive visualization capabilities are included in the visualization folder:

Example visualization outputs:

# Results include: # - Accuracy/F1 GIF animations # - Confusion matrix images # - CSV files with numerical results

⚙️ Framework Choices

Select from four distinct framework approaches:

  1. OL (Online Learning):
    • Processes data one sample at a time
    • Ideal for streaming data applications
  2. ONE-STEP:
    • Uses classifiers from OAL_classifier folder
    • Combines training and online learning in one phase
  3. TWO-STEP-CHUNK:
    • Uses classifiers from classifier folder
    • Separate training and online learning phases
    • Supports batch processing
  4. TWO-STEP-INSTANCE:
    • Uses classifiers from classifier folder
    • Two-phase approach (training then online learning)
    • Processes only one sample at a time
Selection Tip: Enter the number corresponding to your framework choice (1-4) when prompted in the notebook.

🔧 Experiment Parameters

Configure these essential parameters for your experiments:

Parameter Type Description Example Value
max_samples Integer Maximum number of samples to process 10000
n_round Integer Number of experimental rounds 5
n_pt Integer Number of performance tracking points 20
dataset_name String Name of dataset (from available options) 'Waveform'
Dataset Options: You can choose from predefined datasets or specify your own CSV file:
['Jiaolong', 'Waveform', 'SEA', 'Hyperplane' or './datasets/' + name + '.csv']

🤖 Model Selection Guide

Available models vary by framework choice:

OL Framework Models

['ARF', 'LB', 'OB', 'OBADWIN', 'DWM', 'OOB', 'SRP', 'AdaC2', 'QRBLS', 'BLS', 'OSSBLS', 'ISSBLS', 'SOSELM', 'NB', 'DES', 'DES_5', 'ACDWM', 'OLI2DS']

ONE-STEP Framework Models

['ROALE_DI', 'OALE']

TWO-STEP-CHUNK Framework

Available models:

['ARF', 'LB', 'OB', 'OBADWIN', 'DWM', 'OOB', 'SRP', 'AdaC2', 'QRBLS', 'BLS', 'OSSBLS', 'ISSBLS', 'SOSELM', 'NB', 'DES', 'DES_5', 'ACDWM', 'OLI2DS']

Available strategies:

['DMI_DD']

TWO-STEP-INSTANCE Framework

Available models:

['ARF', 'LB', 'OB', 'OBADWIN', 'DWM', 'OOB', 'SRP', 'AdaC2', 'QRBLS', 'BLS', 'OSSBLS', 'ISSBLS', 'SOSELM', 'NB', 'DES', 'DES_5', 'ACDWM', 'OLI2DS']

Available strategies:

['DSA_AI', 'Supervised', 'MTSGQS', 'US_fix', 'US_var', 'CogDQS', 'RS', 'DMI_DD']
Result Output: All predictions are saved as CSV files in the Result folder. Visualization results are saved as GIFs (Accuracy/F1 curves) and confusion matrix images.